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Abstract

Robust control system analysis and design is based on an uncertainty description, called a linear
fractional transformation (LFT), which separates the uncertain (or varying) part of the system from
the nominal system. These models are also useful in the design of gain-scheduled control systems
based on Linear Parameter Varying (LPV) methods.  Low-order LFT models are difficult to form
for problems involving nonlinear parameter variations.  This paper presents a numerical
computational method for constructing an LFT model from a given LPV model.  The method is
developed for multivariate polynomial problems, and uses simple matrix computations to obtain an
exact low-order LFT representation of the given LPV system without the use of model reduction.
Although the method is developed for multivariate polynomial problems, multivariate rational
problems can also be solved using this method by reformulating the rational problem into a
polynomial form.

1.0  Introduction

Formulation of linear fractional transformation (LFT) models of systems involving
nonlinear parameter variations is of interest for robust control system analysis and design, as well
as for control of linear parameter varying (LPV) systems.  Moreover, the LFT models should be of
low order for efficient computation during analysis and design.  A matrix singular value
decomposition (svd) approach was presented in 1985 in references [1] and [2] for computing
LFTÕs for problems involving linear parameter variations.  However, construction of low-order
LFT models for problems involving nonlinear parameter dependencies is very difficult, because it
is equivalent to a multidimensional minimal state-space realization problem for which there is no
general theory.  The approach that has been taken to date for solving nonlinear parameter-
dependent problems is to successively decompose the system until all components are linear, and
then to compute an LFT for each linear component based on the result presented in [1] and [2].
The LFTÕs associated with each system component are then combined using LFT properties to
form the LFT model of the full system.  Model reduction is usually required using this approach,
because unnecessary repetitions of the varying parameters usually result.  A decomposition method
for LFT modeling of nonlinear parameter-dependent systems was first presented in reference [3],
and later refined in reference [4].  This latter paper presented a special decomposition approach
which reduces the number of unnecessary repetitions of the varying parameters, although model
reduction is still employed to reduce the dimension of the resulting LFT model of the full system.

The approach presented in this paper is an extension of the computational approach of
references [1] and [2] for nonlinear parameter-dependent systems, and is based on reference [5].
Specifically, the computational approach is developed for multivariate matrix polynomial problems,
although multivariate rational problems can be solved using this approach by reformulating the
rational problem to be in a multivariate polynomial form.  Reference [6] presents a method for
doing this.  The LFT modeling approach presented in this paper requires no matrix decompositions
for multivariate polynomial problems, and achieves a low-order LFT model directly - i.e., without
the use of model reduction.  Moreover, the computations are based on simple matrix operations,
including the svd and solving linear matrix equations.

2.0  LFT Modeling Problem Definition

The LFT modeling problem to be addressed in this paper is defined below.  It is assumned
that the problem to be solved is in a multivariate matrix polynomial form.  However, as shown in
reference [6], multivariate rational problems can be reformulated as multivariate polynomial
problems and solved using this approach.  The problem is stated as follows.
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    Given   :  A linear parameter varying (LPV) model of a nonlinear parameter-dependent system, as
represented by the following equation
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where S(d) has been separated into nominal and varying components, and the varying (or

uncertain) component, SD(d), has been formulated as an LFT problem given by the following

equation

S ( ) P P P PD d D( - D ( - D D= =21 11
-1
12 21 11

-1
12I P ) I P )                      (2.2)

in which each element of SD(d) is a multivariate polynomial function of the varying parameters, d

   Find   :  A low-order state-space uncertainty model that satisfies equation (2.2) and is characterized
by the constant matrices P21, P12, and P11 and the uncertainty matrix D(d), as depicted below in
Figure 1.
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Figure 1.   LFT Model of the Uncertain System

The P22 matrix represents the nominal part of the system, and is characterized by the nominal A,

B, C, and D system matrices.  The SD(d) matrix of equation (2.2) is a known matrix of
multivariate polynomials based on the LPV model for the system.  Formulation of this matrix was
discussed in reference [6].  The LFT model equations associated with Figure 1 are given below.
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w zD DD =                                                          (2.3c)

        where:  D(d)  =  diag [ d1In1, d2In2, . . . , dmInm ]  Î  R nD x nD            (2.4a)

n n
i 1

m

iD  = å
=

   ,   ni  =  dim( Ii )                                       (2.4b)

The LFT modeling problem consists of solving equation (2.2) for P21, P12, and P11 over some
low-order D matrix (as defined by equation (2.4)).  This is equivalent to a multidimensional
minimal state-space realization problem over the m varying parameters in d.  Unfortunately, there
is no existing minimal realization theory for general multidimensional systems (i.e., for m ³ 3) that
can be used in solving this problem.  In fact, there are no general minimality tests for
multidimensional systems given a realization.  This paper presents a numerical computational
approach for solving equation (2.2) for P21, P12, and P11 such that the resulting D matrix is of low
order.  These results are summarized in Section 3.

3.0  Main Results:  LFT Model Computation

As discussed in Section 2, the LFT problem to be solved is given by the following
equation:

SD(d)  =  P21(I Ð D(d)P11)Ð1 D(d)P12  ,   SD(d) Î PPPP  nrows´ncols               (3.1)

The term SD(d) is a known matrix function of the normalized uncertain parameters in d, and P21,

P12,  and P11, are the unknown matrix variables to be determined.  The dimension of  D(d) must
also be determined in constructing the LFT model such that the resulting dimension is low-order.
It is assumed that the functional form of the elements of SD(d) is multivariate polynomial.
However, as discussed in Section 2, rational problems can also be solved by reformulation of the
rational problem (see Reference [6]).

3.1  Numerical LFT Solution Approach

As can be seen in equation (3.1), solving for the matrices P21, P12, P11 and D(d) involves

the inversion of the matrix [I Ð D(d)P11].  For multivariate polynomial problems, this matrix
inversion can be exactly replaced by a finite series and an associated nilpotency condition.  This is
expressed in the following equations.

( I - D(d)P11 )Ð1   =  I  +  (D(d)P11)  +  (D(d)P11)2  +  . . .  + (D(d)P11)r         (3.2)

[D(d)P11]r+1  =  0                                                        (3.3)

Substituting equation (3.2) into equation (3.1) results in the following equation for SD(d).

SD(d)  =  P21D(d)P12  +  P21[ D(d)P11  +  (D(d)P11)
2
  +  . . .  (D(d)P11)

r
 ]D(d)P12      (3.4)
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The first term on the right side of equation (3.4), i.e. P21DP12, represents the   linear   uncertain

components of SD(d), and the second term adds in the    nonlinear   terms.  For the case of

multivariate polynomial uncertainties, the nonlinear terms of SD(d) consist of crossterms of the d

parameters and nth-order terms.  Thus, the order (r) of the highest term in the series of equation
(3.4) is determined by the degree of the highest term appearing in SD(d), where crossterm degree
can be defined as follows.

degree ( d1
x

1  d2
x

2  d3
x

3 . . . di
x

i )  =  ( x1 + x2 + ... + xi ) Ð 1   ;     i £ m        (3.5)

Then, the exponent r in equation (3.4) can be defined by the following inequality.

r   £  ( h1 + h2 + ... + hm ) Ð 1                                               (3.6)

where hi is the maximum degree of di in SD(d).

Since the uncertain system matrix, SD(d), has as its elements multivariate polynomial

functions of d, it can be easily expanded in a similar manner as the right side of equation (3.4),
i.e.:
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Then like terms from equations (3.4) and (3.7) can be equated as follows.
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The uncertainty modeling problem therefore requires that equations (3.8) be solved for P21, P12,

P11, and D(d) such that the nilpotency condition of equation (3.3) is satisfied.
In order to evaluate equations (3.8) and (3.3) in more detail, consider an expanded

definition of P11 , P12, and P21 containing partitioned submatrices associated with the diIni blocks
of the D matrix given in equation (2.4a), as shown below.
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where:         P11d di j

ni n jRÎ
´

,  P12di

ni ncolsRÎ
´

, P21di

nrows niRÎ
´

         (3.12)

Equation (2.4a) is repeated here for convenience.

  
D = [ ]d d d1 2I I In1 n2 m nm

L                                      (3.13)

Substituting equations (3.9) - (3.13) into equations (3.8) and (3.3) leads to a set of extremely
complicated equations to solve.  In order to satisfy the nilpotency condition of equation (3.3), the
matrix P11 must itself be nilpotent.  Allowing P11 to have a pre-defined nilpotent structure provides
a means of somewhat simplifying these equations while assisting in satisfying the nilpotency
condition of equation (3.3).  The following Lemma establishes a general nilpotency structure that
will be used throughout this paper.

   Lemma 3.1   

Let A RÎ ´n n  be a quasi-triangular partitioned matrix whose main-diagonal blocks are nilpotent,
as defined below.
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A Rii
ni niÎ ´

,  Aii

hi
  =  0,  hi £ ni   ,  i = 1, 2, ... , m                        (3.14b)

Then matrix A is a nilpotent matrix with index of nilpotency, h, as defined below.

A
h
  =  0  ,      h = hi

i 1

m
n

=
å £                                                     (3.15)

   Proof  :

Nilpotency of matrix A is clearly established by considering the eigenvalues of A.  Since A is
upper triangular, its eigenvalues are comprised of the eigenvalues of its main-diagonal blocks.
Since each main-diagonal block is itself nilpotent, the eigenvalues of each must be zero (see
Reference [7]).  Hence, the eigenavalues of A must be zero and A must therefore be nilpotent.  The
index of nilpotency, h, of matrix A is established by the following.

          Let:   r = h1 + h2 + ... + hm

                         Þ          A
r
  =  A 

h1+ h 2+...+ h n
   =  A
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 A
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Then, each matrix A
hi

 contains a zero diagonal block corresponding to Aii, since hi is its index of

nilpotency.  It can therefore be shown that multiplication of these matrices to obatin A
r
 for r = h1 +

h2 + ... + hm results in the zero matrix, since each main-diagonal block is zero.  However, if  r <

h1 + h2 + ... + hm then one of the main-diagonal blocks will not be zero, hence A
r
 will not equal

zero.  Thus, the nilpotency index for A must be equal to  r = h1 + h2 + ... + hm.  As can be
verified in Reference [8], the nilpotency index for any matrix must be less than or equal to its
dimension (i.e., n for matrix A).  This can also be verified by the following.

                                          hi £ ni    for every  i = 1, 2, ... , m

                                            Þ     h h= å £ å =
= =

i
i 1

m

i
i 1

m
n n

Thus, equation (3.15) is satisfied.  

QED

Note that the quasi-triangular structure defined by Lemma 3.1 is sufficient but not necessary for
nilpotency.  Other special structures can also be found.  In fact, nilpotent matrices can be fully
populated with nonzero elements.  However, assuming some special structure for P11 simplifies
the solution of equations (3.8) and (3.3).  For implementation purposes, allowing the special
structure to be more general than upper-quasi-triangular may result in a less conservative (i.e.,
lower order) P-D model for some problems.  However, for purposes of this paper, Lemma 3.1
will be used to fix the structure of P11 so that the solution can be clearly derived.

The quasi-triangular structure defined by Lemma 3.1 can be used in expanding equations
(3.8) and (3.3).  Thus, let P11 be defined to have the following upper quasi-triangular structure.

  

P

P P P

P P

P

11

11 11 11

11 11

11

0

0 0

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

d d d d d d

d d d d

d d

1 1 1 2 1 m

2 2 2 m

m m

L

L

M M O M

L

                                       (3.16)

             where:  (P
ii
i id d

)
hi

  =  0,     hi £ ni   ,     i = 1, 2, ... , m                                (3.17)

Then substitution of equations (3.10), (3.11) and (3.16) into equations (3.8) yields the following
set of equations.

Linear Terms:

P P S21 12 0d d di i i

= D   ,    i = 1, 2, ... , m                                   (3.18)
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                  where:                             x  = x i1
 + x i2

 + ... + x inT

 i1 = 1, 2, ... , m Ð (nT Ð 1)
i2 = i1 + 1, i1 + 2, ... , m Ð (nT Ð 2)

  M
inT

 = i1 + (nT Ð 1), ... , m

                                             nT  =  number of parameters in the crossterm

Note that the SD terms on the right-hand side of equations (3.18) - (3.20) are the known constant

matrix coefficients associated with the indicated parameter terms in SD (d).  Moreover, depending

on the number of parameters and the degree of each appearing in SD (d), there can be literally
hundreds of SD coefficient terms - and hence equations to be solved.

3.2  Numerical LFT Model Solution

This section presents a numerical approach for solving all equations of the form defined by
equations (3.18) - (3.20) such that the nilpotency condition of equation (3.3) is satisfied and the
resulting P-D model is of low-order.  The results of this section are divided into three sub-sections.
The first sub-section presents a solution for P21, P12, and the main-diagonal blocks of P11 ;  the
second sub-section presents a solution for the off-diagonal blocks of P11 ;  and the third sub-section
presents results relating to nilpotency and reducibility of the resulting model.

3.2.1  Simultaneous Solution of P21, P12, and P11 Main-Diagonal Blocks for each di Parameter

The P21, P12, and P11 main-diagonal blocks are solved simultaneously for each uncertain
parameter di using the linear and x

th 
-degree terms defined by equations (3.18) and (3.19).

Moreover, the solution is accomplished such that the resulting main-diagonal blocks of P11  are
nilpotent with the appropriate index of nilpotency - as required by equation (3.17).  This solution is
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accomplished numerically with a matrix singular value decomposition (svd) by recognizing that
this part of the problem is equivalent to a 1-D state-space (minimal) realization problem and by
appropriately defining an equivalent Hankel matrix.  The solution is accomplished for each di
parameter as shown by the following theorem (which is based on Theorem 6-4, pages 268 - 272,
of reference [9]).

   Theorem 3.1   

Consider the linear and z
th

-degree terms of SD(d) Î PPPP  nrows´ncols
, which can be expanded as

follows

SDL,z
(d)  =  [SD0di

] di  +  [SD1di2
] di

2
  +  ...  +  [SDhiÐ1di

hi
] di

hi
               (3.21a)

Þ          S SD DL, n 1
i
nn

i
i
n

z
d

h
d= å

-=
[ ]
1

                                              (3.21b)

and use the constant coefficient matrices of equation (3.21) to form the Hankel matrices defined
below
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Using a matrix svd, factor equation (3.22) as follows

S U U P PD0
d

d d d d d d d d d
i

i i i
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i i
1/2

i
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21
i
12

i
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              where:    rank rank rank

i
21

i
12

i
( ) ( ) ( )S P PD0

d d d
= =

Then the matrices P21di
, P12di

, and P11di di
 form an irreducible realization of SDL,z

(d) as definedby

equation (3.21), where:

P I 0 P21d di
nrows 21

i
= [ ]                                                   (3.25)

P P
I

012
i

12
i

ncols
d d

=
é

ë
ê

ù

û
ú                                                   (3.26)

P P S P11
i i

21
i 1

i
12

id d d d d
= ( ) ( )² ²

D                                         (3.27)

and the notation (A)
 
 designates the pseudoinverse of matrix A.

   Proof  :

From equation (3.24), define the following:

( ) ( ) ( )² ² ²S P PD0
d d d
i

12
i

21
i

=                                               (3.28)

Then it is easy to show that:

                 S S S P P P P P PD D D0 0 0
d d d d d d d d d
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i
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i
12

i
( ) ( ) ( )² ² ²=

   = =P P S21
i
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i i
d d d

D0
                                                  (3.29)

Define the following relationship between the Hankel matrices of equations (3.22) and (3.23):

   S M S S ND D D1
i

i 0
i

0
i

id
d

d d
d= =                                            (3.30)

which generalizes to:

   M S S Nd
d d

di
n

0
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0
i

i
n

D D=      ;   n = 0, 1, 2, ...                             (3.31)

where:



10

   

  

M

0 I 0 0

0 0 I 0

0 0 0

I

0 0 0 0

di

nrows

nrows

nrows

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

L

L

O M

M M M O

L

                                      (3.32)

   

  

N

0 0 0 0

I 0 0 0

0 I 0

0

0 0 I 0

di

ncols

ncols

ncols

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

L

L

O M

M M O M

L

                                              (3.33)

Consider the following:
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i i 21 i

12
i

12
i

21
i i

i
12

id d d d d d d
d dD0

                       = ( ) ( )² ²P M S P21
i i

2

i
12

id d
d dD0

Þ            ( ) ( ) ( )² ²P P M S P11
i i

n
21

i i
n

i
12

id d d d
d d

= D0
                                (3.34)

Now, the constant coefficient matrices of equation (3.26) can be rewritten as follows:

S I M S
I

D Dn 1
i
n

nrows i
n±1

i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d
d

d
0

00
                                      (3.35)

Substituting equation (3.29) into this expression yields:

Þ    S I M S S S
I

D D D Dn 1
i
n

nrows i
n±1

i i i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d
d

d d d
0

00 0 0
( )²

Substitution of equation (3.31) into this equation yields the following:
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Þ    S I S N S S
I

D D D Dn 1
i
n

nrows
i

i
n±1

i i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d d
d

d d
0

00 0 0
( )²

Substituting equation (3.29) into this expression yields:

Þ    S I S S S N S S
I

D D D D D Dn 1
i
n

nrows
i i i

i
n±1

i i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d d d d
d

d d
0

00 0 0 0 0
( ) ( )² ²

Substitution of equation (3.31) into this equation yields the following:

       Þ    S I S S M S S S
I

D D D D D Dn 1
i
n

nrows
i i

i
n±1

i i i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d d d
d

d d d
0

00 0 0 0 0
( ) ( )² ²

Substituting equations (3.24) and (3.28) into this equation yields the following result:

S I P P P P M S P P P P
I

D Dn 1
i
n

nrows 21
i
12

i
12

i
21

i i
n±1

i
12

i
21

i
21

i
12

i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d
d d d d d

d d d d d
0

0
( ) ( ) ( ) ( )² ² ² ²

0

Þ     S I P P M S P P
I

D Dn 1
i
n

nrows 21
i

21
i i

n±1

i
12

i
12

i

ncols
-

= [ ] é

ë
ê

ù

û
ú

d
d d d

d d d
0

0
{( ) ( ) }² ²

0

Then, using equations (3.25) - (3.27) and (3.34) yields the following result:

S P PDn 1
i
n

21
i

11
i i

n±1
12

i
P

-
=

d
d d d d
( )   ;   n  =  1, 2, ... , hi                        (3.36)

Recalling equations (3.18) and (3.19), equation (3.36) shows that equations (3.25) - (3.27) are a
realization of SDL,z

(d), as definedby equation (3.21).  To show irreducibility, consider the

following:

n rank rank ranki 11
i i i

21
i

12
i

= = £dim( ) ( ) min{ ( ), ( )}P S P P
d d d d dD0

                 (3.37)

Using equations (3.18) and (3.19), the following matrices can be defined to be consistent with the
Hankel matrix given by equation (3.22) and its svd given by (3.24).
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P

P

P P

P P

P P

21
i

i

i
1

i i

i
1

i i

2

i
1

i i

i

d

d

d d d

d d d

d d d

h

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

-

21

21 1

21 1

21 1
1

( )

( )

( )

M

      ,       P R21
i

( inrows) ni
d

h
Î

´
                   (3.38)

            
  
P P P P P P P P12

i i
1

i i i
1

i i

2

i
1

i i

i

id d d d d d d d d d

h

d
=

é

ë
ê

ù

û
ú

-
12 1 12 1 12 1

1
12( ) ( ) ( )L    ,

P R12
i

ni ( incols )

d

h
Î

´
                                                         (3.39)

Since P R21
i

( inrows) ni
d

h
Î

´
 and P R12

i

ni ( incols )

d

h
Î

´
 are tall and wide matrices (respectively)

that result from the svd computation of equation (3.24), the rank of each equals ni and equation
(3.37) can be evaluated as follows.

n rank rank ranki 11
i i i

21
i

12
i

= = = =dim( ) ( ) ( ) ( )P S P P
d d d d dD0

                 (3.40)

Hence, the realization given by equations (3.25) - (3.27) is irreducible. QED

Note that as stated in equation (3.17), each main diagonal block of P11 must be nilpotent of

index hi, i.e.:
                                                                      ( )P11

i i

i
d d

h = 0

The following theorem establishes the nilpotency of P11didi
.

   Theorem 3.2

The P11di di
 matrix computed using the result of Theorem 3.1 is nilpotent with index hi.

   Proof  :

Consider the following equation:

( ) [( ) ( ) ]² ²P P S P11
i i

i
21

i 1
i

12
i

i
d d

h

d d d

h= D
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Substituting from equations (3.24) and (3.30), and using the fact that Udi
 and Vdi

 are unitary

matrices yields the following result.

( ) [( ) ( ) ]² ²P U M S V11
i i

i
i i

1/2
i 0

i
i
1/2

i
i

d d

h
d d d

d
d d

h= S SD

       Þ        ( ) [ ]P U M U V V11
i i

i
i
-1/2

i
T

i i i i i
T

i
-1/2 i

d d

h
d d d d d d d d

h= S S S

             Þ        ( ) [ ]P U M U11
i i

i
i
-1/2

i
T

i i i i
-1/2 i

d d

h
d d d d d d

h= S S S

                Þ        ( ) [ ]P U M U11
i i

i
i
-1/2

i
T

i i i
1/2 i

d d

h
d d d d d

h= S S

Then, the right-hand side of the equation can be separated into the product of matrix components as
follows.

                  ( ) [ ] [ ]P U M U U M U11
i i

i
i
-1/2

i
T

i i i
1/2 2

i
-1/2

i
T

i i i
1/2 i 2

d d

h
d d d d d d d d d d

h= -S S S S

Squaring the first term yields the following.

( ) [( )( )][ ]P U M U U M U U M U11
-1/2 T 1/2 -1/2 T 1/2 -1/2 T 1/2 2

i i

i

i i i i i i i i i i i i i i i

i

d d

h
d d d d d d d d d d d d d d d

h= -S S S S S S

Þ         ( ) [ ][ ]P U M U U M U11
i i

i
i
-1/2

i
T

i
2

i i
1/2

i
-1/2

i
T

i i i
1/2 i 2

d d

h
d d d d d d d d d d

h= -S S S S

Continuing this process yields the following result (which is consistent with equation (3.34) for n
= hi).

( )P U M U11
i i

i
i
-1/2

i
T

i
i

i i
1/2

d d

h
d d d

h
d d= S S

Since Mdi
 has hi block rows and columns and is defined by equation (3.32), it is a nilpotent matrix

with index hi (see Reference [10]).  Therefore, the deired result is obtained, i.e.:

( )P11
i i

i
d d

h = 0    

QED

In summary, this section has presented a simple numerical technique for computing P21di
,

P12di
, and P11di di

 for each uncertain parameter.  The result is irreducible, and each main-diagonal

block is guaranteed to be nilpotent of index hi , where hi is the highest degree of di appearing in

SD(d).
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3.2.2  Solution of P11 Off-Diagonal Blocks

The P11 off-diagonal blocks are each solved using the appropriate crossterms of SD(d), as
defined by equation (3.20).  The number of off-diagonal blocks to be solved is given by the
following equation.

n (m i)ODB
i 1

m 1
= -å

=

-
                                                      (3.41)

The equation to be solved for each off-diagonal block of P11 is a generalized linear matrix
equation.  The general equation is given below for computing the off-diagonal block P11dndj

,

where n = 1, 2, ... , mÐ1 and j = n+1, n+2, ... , m.

( ) ( )P P P P S21
n

[n]
11

n

[n]
11

n j
12

j n

[n]

d d d d d d
= D                                   (3.42)

The matrices P21
n

[n]

d
 , P11

n

[n]

d
, P12

jd
, and SDdn

[n] in equation (3.42) are comprised

of known matrices as well as matrices that have already been computed at this point in the solution
process. Their explicit general definition is given in the following pages.

The matrix P21
n

[n]

d
 in equation (3.58) is a block-diagonal matrix with n partitions along

the main-diagonal, which is comprised of known matrices (i.e., matrices that have already been

computed at this point).  This matrix can be defined as follows.

                  

  

P P P P P21
n

[n]
21

n
21

i1 n

[2]
21

i1 i2 n

[2]
21

i1 i2 i3 n

[2]diag[
d d d d d d d d d d d

= , , , , ,L

                                              

  

P P21
i1 i2 ik-1 n

[2]
21

1 2 in-1 n

[2]

d d d d d d d dL L
L, , ]

     where:

Partition 1:                       

  

P

P

P P

P P

P P

21
n

n

n
1

n n

n
1

n n

2

n
1

n n

n

d

d

d d d

d d d

d d d

h

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

-

21

21 1

21 1

21 1
1

( )

( )

( )

M

        ,     
n 1

0

-æ
è
ç

ö
ø
÷ = 1 Block

Partition 2:                   

  

P P P P21
i1 n

[2]
21

1 n

[2]
21

2 n

[2]
21

n-1 n

[2]diag[
d d d d d d d d

= , , , ]L    ,
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n 1

1
n

-æ
è
ç

ö
ø
÷ = -1 Blocks

                                     P P I21
i1 n

[2]
21

i1
nd d d h= Ä        ;      i1 = 1, 2, ... , n Ð 1

Partition 3:   

  

P P P P21
i1 i2 n

[2]
21

1 2 n

[2]
21

1 3 n

[2]
21

1 n-1 n

[2]diag[
d d d d d d d d d d d d

= , , , ,L

                                        
  
P P P P21

2 3 n

[2]
21

2 4 n

[2]
21

2 n-1 n

[2]
21

n-2 n-1 n

[2]

d d d d d d d d d d d d
, , , , , ]L L  ;

                                                             
n 1

2
n (n 2)-æ

è
ç

ö
ø
÷ =

- -( )

!

1

2
 Blocks

                                                    P P I21
i1 i2 n

[2]
21

i1
i2 nd d d d h h= Ä ×        ;

                                        i1 = 1, 2, ... , n Ð 2    ,   i2  =  i1 + 1, i1 + 2, ... , n Ð 1

Partition 4:

           

  

P P P P21
i1 i2 i3 n

[2]
21

1 2 3 n

[2]
21

1 2 4 n

[2]
21

1 2 n-1 n

[2]diag[
d d d d d d d d d d d d d d d d

= , , , ,L

                            
  
P P P P21

1 3 4 n

[2]
21

1 3 5 n

[2]
21

1 3 n-1 n

[2]
21

n-3 n-2 n-1 n

[2]

d d d d d d d d d d d d d d d d
, , , , , ]L L  ;

                                                     
n 1

3
n (n 2)(n 3)-æ

è
ç

ö
ø
÷ =

- - -( )

!

1

3
 Blocks

                                                  P P I21
i1 i2 i3 n

[2]
21

i1
i2 i3 nd d d d d h h h= Ä × ×        ;

i1 = 1, 2, ... , n Ð 3  ;   i2  =  i1 + 1, i1 + 2, ... , n Ð 2  ;  i3  =  i1 + 2, i1 + 3, ... , n Ð 1

Partition k:
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P21
i1 i2 ik-1 n

[2]

d d d dL
=

                
  
diag[ 21

1 2 k-2 k-1 n

[2]
21

1 2 k-2 k n

[2]
21

1 2 k-2 n-1 n

[2]P P P
d d d d d d d d d d d d d d dL L L

L, , , ,

                         
  
P P P21

1 3 k-1 k n

[2]
21

1 3 k-1 k+1 n

[2]
21

1 3 k-1 n-1 n

[2]

d d d d d d d d d d d d d d dL L L
L, , , ,

                                                                
  
L, ]P21

n-3 n-2 n-1 n

[2]

d d d d
     ;

                                       
  

n 1

k -1
(n 1)!

(k 1)!(n k)!

n (n 2) (n k )

k 1)!

-æ
è
ç

ö
ø
÷ =

-

- -
=

- - - +

-

( )

(

1 1L
  Blocks

                                              

  

P P I21
i1 i2 ik-1 n

[2]
21

i1
i2 ik-1 nd d d d d h h h

L
K= Ä × × ×        ;

                                      i1 = 1, 2, ... , n Ð k + 1  ;     i2  =  i1 + 1, i1 + 2, ... , n Ð k + 2  ;

                                        i k-2  =  i1 + k Ð 3, ... , n Ð 2  ;    i k-1  =  i1 + k Ð 2, ... , n Ð 1

Partition n:

                         
  
P P I21

1 2 n n

[2]
21

1 2 3 n-1 nd d d -1d d h h h h
L

K= Ä × × × ×        ;        
n 1

n -1

-æ
è
ç

ö
ø
÷ = 1  Block

Note that all P21
id
terms in the above equations are defined by the P21

nd
equation given for

Partition 1.
The matrix P11

n

[n]

d
 in equation (3.42) is a block-column matrix with n partitions, and is

comprised of known matrices (i.e., matrices that have already been computed at this point).  This

matrix is defined as follows.



17

                                               

  

P

I

P

P

P

P

P

11
n

[n]

nn

11
i1 n

[2]

11
i1 i2 n

[3]

11
i1 i2 i3 n

[4]

11
i1 i2 ik-1 n

[k]

11
1 n-1 n

[n]

d

d d

d d d

d d d d

d d d d

d d d d

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

M

M

L

L2

Partition 1:                     Inn
  =  Identity Matrix of Dimension determined by dn

Partition 2:                  

  

P

P

P

P

11
i1 n

[2]

1 n

[2]

2 n

[2]

n-1 n

[2]

d d

d d

d d

d d

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

11

11

11

M
        ;     

n 1

1
n

-æ
è
ç

ö
ø
÷ = -1 Blocks

                                                         P P P11
i1 n

[2]
11

i1 n

[1]
11

nd d d d d
=

                                      P P I11
i1 n

[1]
11

i1 n nd d d d h= Ä        ;      i1 = 1, 2, ... , n Ð 1

                                                    

  

P

I

P

P

11
n

nn

11
n n

11
n n

n 1
d

d d

d d

h

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

-

( )

( )

M
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Partition 3:

  

  

P

P

P

P

P

P

P

P

11
i1 i2 n

[3]

11
1 2 n

[3]

11
1 3 n

[3]

11
1 n-1 n

[3]

11
2 3 n

[3]

11
2 4 n

[3]

11
2 n-1 n

[3]

11
n-2 n-1 n

[3]

d d d

d d d

d d d

d d d

d d d

d d d

d d d

d d d

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

M

M

M

úú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

   ;  
n 1

2
n (n 2)-æ

è
ç

ö
ø
÷ =

- -( )

!

1

2
 Blocks

                                    P P P P11
i1 i2 n

[3]
11

i1 i2 n

[2]
11

i2 n

[1]
11

nd d d d d d d d d
=

                                              P P I11
i1 i2 n

[2]
11

i1 i2

[2]
nd d d d d h= Ä

                                                  P P P11
i1 i2

[2]
11

i1 i2

[1]
11

i2
d d d d d

=

                                                  P P I11
i1 i2

[1]
11

i1 i2
i2d d d d h= Ä

                                                   P P I11
i2 n

[1]
11

i2 n nd d d d h= Ä

                                   i1 = 1, 2, ... , n Ð 2     ;     i2 = i1 + 1, i1 + 2, ... , n Ð 1
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Partition 4:

  

P

P

P

P

P

P

P

P

11
i1 i2 i3 n

[4]

11
1 2 3 n

[4]

11
1 2 4 n

[4]

11
1 2 n-1 n

[4]

11
1 3 4 n

[4]

11
1 3 5 n

[4]

11
1 3 n-1 n

[4]

11
n-3 n-2 n-1 n

[4]

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

M

M

M

êê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

 ;  
n 1

3
n (n 2)(n 3)-æ

è
ç

ö
ø
÷ =

- - -( )

!

1

3
 Blocks

                                     P P P P11
i1 i2 i3 n

[4]
11

i1 i2 i3 n

[3]
11

i3 n

[1]
11

nd d d d d d d d d d d
=

                                          P P I11
i1 i2 i3 n

[3]
11

i1 i2 i3

[3]
nd d d d d d d h= Ä

                                         P P P P11
i1 i2 i3

[3]
11

i1 i2 i3

[2]
11

i2 i3

[1]
11

i3
d d d d d d d d d

=

etc.   (see above)

     i1 = 1, 2, ... , n Ð 3     ;     i2 = i1 + 1, i1 + 2, ... , n Ð 2     ;     i3 = i1 + 2, i1 + 3, ... , n Ð 1
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Partition k:

  

P

P

P

P

P

P

P

11
i1 i2 ik-1 n

[k]

11
1 2 k-2 k-1 n

[k]

11
1 2 k-2 k n

[k]

11
1 2 k-2 n-1 n

[k]

11
1 3 k-1 k n

[k]

11
1 3 k-1 k+1 n

[k]

11
1 3 k-

d d d d

d d d d d

d d d d d

d d d d d

d d d d d

d d d d d

d d d

L

L

L

L

L

L

L

M

M

=

11 n-1 n

[k]

11
n-k+1 n-k+2 n-1 n

[k]

d d

d d d d

M

L
P

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

   ;

                                        
  

n 1

k -1
(n 1)!

(k 1)!(n k)!

n (n 2) (n k )

k 1)!

-æ
è
ç

ö
ø
÷ =

-

- -
=

- - - +

-

( )

(

1 1L
  Blocks

                                

  

P P P P11
i1 i2 ik-1 n

[k]
11

i1 i2 ik-1 n

[k-1]
11

ik-1 n

[1]
11

nd d d d d d d d d d dL L
=

                                           

  

P P I11
i1 i2 ik-1 n

[k-1]
11

i1 i2 ik-1

[k-1]
nd d d d d d d h

L L
= Ä

                                 

  

P P P P11
i1 i2 ik-1

[k-1]
11

i1 i2 ik-1

[k-2]
11

ik-2 ik-1

[1]
11

ik-1
d d d d d d d d dL L

=

                                             

  

P P I11
i1 i2 ik-1

[k-2]
11

i1 i2 ik-2

[k-2]
k-1d d d d d d h

L L
= Ä

                                                                                    M

                                                        P P I11
i1 i2 i3

[2]
11

i1 i2

[2]
i3d d d d d h= Ä

                                                              P P P11
i1 i2

[2]
11

i1 i2

[1]
11

i2
d d d d d

=
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                                                              P P I11
i1 i2

[1]
11

i1 i2
i2d d d d h= Ä

                                   i1 = 1, 2, ... , n Ð k + 1     ;     i2 = i1 + 1, i1 + 2, ... , n Ð k +2

                                                                                 M

                                      ikÐ2 = i1 + k Ð 3, ... , n Ð 2    ;    ikÐ1 = i1 + k Ð 2, ... , n Ð 1

Partition n:     
  
P P P P11

1 2 n-1 n

[n]
11

1 2 n-1 n

[n-1]
11

n-1 n

[1]
11

nd d d d d d d d d d dL L
=  ;   

n 1

n -1

-æ
è
ç

ö
ø
÷ = 1  Block

The first two matrices on the right side of the above equation for Partition n are defined by the
preceeding equations for Partition k.  Also, all P11

id
terms in the above equations are defined by

the P11
nd

equation given for Partition 2.

The matrix P12
jd
 in equation (3.42) is a block-row matrix with j partitions, and is

comprised of known matrices (i.e., matrices that have already been computed at this point).  This

matrix can be defined as follows.

                        

  

P P P P P P P P12
j

12
j

11
j j

12
j

11
j j

2
12

j
11

j j

j 1
12

j
[

d d d d d d d d d d

h

d
=

-
, ,( ) , ,( ) ]L

The matrix SDdn

[n] on the right side of equation (3.42) is a block-column matrix with n

partitions, and is comprised of known coefficeint matrices from the expansion of SD(d).  This

matrix can be defined as follows.
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S

S

S

S

S

S

S

D

D

D

D

D

D

D

d

d d

d d d

d d d d

d d d d d

d d d d d

d d d d d

n

[n]

n j

i1 n j

[2]

i1 i2 n j

[2]

i1 i2 i3 n j

[2]

i1 i2 ik-1 n j

[2]

1 2 n-1 n j

[2]

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

M

M

L

L

úú
ú
ú
ú
ú
ú
ú
ú

Partition 1:

                  

  

S

S S S

S S S

S S S

D

D D D

D D D

D D D

d d

d d d d h
d d h

d d d d
(h

d d h

h
d h d

(h
d h d

(h h
d h d h

n j

n j n j
j
n j j

n
2
j n

2
j
2 j

n
2
j j

n
n n j

n
n n j

2 n j
n n j j

=

é

ë

ê
ê
ê

+

+ + -

1 2 2

2 3 1

1 1

L

L

M M O M

L

)

) )

êê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

   ;

                                                               j  =  n + 1, n + 2, ... , m

Partition 2:

            

  

S

S

S

S

D

D

D

D

d d d

d d d

d d 2d

d d h d

i1 n j

[2]

i1 n j

i1 n j

i1 n n j

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

M
 ;   i1  =  1, 2, ... , n Ð 1   ;   j  =  n + 1, n + 2, ... , m
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S

S S

S S

S S

D

D D

D D

D D

d d d

d d d d d d

d d d d d d

(h

d h d d

(h

d h d d

i1 n j

(1 )
i1 n j i1 n j

(2 )
i1
2
n j

(3 )
i1
2
n j

2

i1
i1
i1 n j

i1
i1
i1 n j

l

l
l

l
l

l
l

l
l

l
l

l
l

=

+ +

+ +

+ + +

( )

) )

2 2

1

L

L

M M L

22

L

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

                                                        

  

L

L

L M

L

S

S

S

D

D

D

(h
d d d h

(h
d d d h

(h h

d h d d h

j
i1 n j j

j
i1
2
n j j

i1 j

i1
i1 n j j

+

+ +

+ + -

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

l
l

l
l

l
l

)

)

)

1

1

  ;   l  =  1, 2, ... , hn

Partition 3:

                                           

  

S

S

S

S

D

D

D

D

d d d d

d d d d

d d d 2d

d d d h d

i1 i2 n j

[2]

i1 i2
i2 n j

i1 i2
i2 n j

i1 i2
i2 n n j

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

l

l

l

M

                                         i1  =  1, 2, ... , n Ð 2   ;   i2  = i1 + 1, i1 + 2, ... , n Ð 1

                                          li2
  =  1, 2, ... , h i2

    ;   j  =  n + 1, n + 2, ... , m
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S

S S S

S S S
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D

D D D

D D D
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d dd

d dd d dd
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d dd h

d dd d dd
(h

d dd h

(h

d h dd

i1 j

(1 )
i1 j i1 j

j
i1 j j
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2

j
(3 )

i1
2

j
2 j
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2

j j

i1
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=

+ + +

+ + + +

+

l l l

l l l

l

( ) )

)

)

2 2

1

L

L

M M O M

jj

i1
i1
i1 j

2
i1 j

i1
i1 j j

S SD D
(h

d h dd

(h h

d h dd h
+ + + + -

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

l l1 1) )
L

                                     
  
d d d= ( ) ( )i2

i2
n

n
l l     ;   ln  =  1, 2, ... , hn    ;    

  
l l l= +i2 n

                                                                  Note  :  li2
 is updated before ln

Partition 4:

                         

  

S

S

S
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D

D

D

D

d d d d d

d d d d d

d d d d 2d

d d d d h d
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i1 i2
i2 i3
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i1 i2
i2 i3
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i1 i2
i2 i3
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=
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ù

û

ú
ú
ú
ú
ú
ú
ú
ú

l l
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l l

M

                                     i1  =  1, 2, ... , n Ð 3   ;   i2  = i1 + 1, i1 + 2, ... , n Ð 2

                                   i3  = i1 + 2, i1 + 3, ... , n Ð 1   ;   j  =  n + 1, n + 2, ... , m

                                 li2
  =  1, 2, ... , h i2

    ;    li3
  =  1, 2, ... , h i3
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d dd d dd
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j
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j
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=
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+
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)

)
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1

L

L
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S SD D
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d h dd

(h h

d h dd h
+ + + + -

é
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ê
ê
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ù
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l l1 1) )
L

                           
  
d d d d= ( ) ( ) ( )i2

i2
i3

i3
n

n
l l l     ;   ln  =  1, 2, ... , hn    ;    

  
l l l l= + +i2 i3 n

                                          Note  :  li2
 is updated before li3  ;   li3

 is updated before ln

Partition k:

                               

  

S

S

S

S

D

D

D

D

d d d d d

d d d d d

d d d d 2d

d d d d h d

i1 i2 ik-1 n j

[2]

i1 i2
i2 ik-1

ik-1 n j

i1 i2
i2 ik-1

ik-1 n j

i1 i2
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L
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L
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M
=
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ê
ê
ê
ê
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û
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ú
ú

l l

l l

l l

úú
ú
ú
ú
ú

                               i1  =  1, 2, ... , n Ð l + 1   ;   i2  = i1 + 1, i1 + 2, ... , n Ð l + 2

                                                                               M

                       il-2  = i1 + l - 3, i1 + l - 2, ... , n Ð 2   ;   il-1  = i1 + l - 2, i1 + l - 1, ... , n Ð 1

                                                           j  =  n + 1, n + 2, ... , m

                            li2
  =  1, 2, ... , h i2

    ;   ...   ;    likÐ1
  =  1, 2, ... , h ikÐ1
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=
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+
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2
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S SD D
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+ + + + -
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l l1 1) )
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d d d d= ( ) ( ) ( )i2

i2
ik±1

ik±1
n

n
l l l

L    ;   ln  =  1, 2, ... , hn

                                                      
  
l l l l l= + + + +i2 i3 ik±1 nL

        Note  :  li2
 is updated before li3

  ;  li3
 is updated before li4

   ;  ... ; likÐ1
 is updated before ln

Partition n:

                                     

  

S

S

S

S

D

D

D

D

d d d d d

d d d d d

d d d d 2d

d d d d h d

1 2 n±1 n j
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1 2 2 n±1 n±1 n j
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=
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ê
ê
ê
ê
ê

ù
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ú
ú
ú
ú
ú
ú
ú
ú

l l

l l

l l

                                                            j  =  n + 1, n + 2, ... , m

                           l2  =  1, 2, ... , h 2    ;   ...   ;    lnÐ1      =  1, 2, ... , h nÐ1
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1 j j

(2 )
1
2

j
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1
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j
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1
2

j j

1

1 1 j

1

=
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l l l
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)
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1

1

L

L
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h
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(h h

d
h

dd h1
1

j
2

1 j

1
1

j j

L SD
+ + -

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

l 1)

                                          d d d d= ( ) ( ) ( )2
2

n±1
n±1

n
nl l l

L    ;   ln  =  1, 2, ... , hn

                                                               l l l l l= + + + +2 3 n±1 nL

        Note  :  l2 is updated before l3  ;  l3 is updated before l4   ;  ... ; lnÐ1 is updated before ln

The above general equations, which define the matrices given in equations (3.42) for
generating the off-diagonal block equations, are complicated due to the large number of cross-
product terms that can arise in solving the general problem and due to the notation required to
generate the associated equations.  As an illustration of generating these equations based on
equations (3.42) and the above defining equations, the off-diagonal block equations for the case of
three parameters (m = 3) with maximum degree of 2 for each di parameter (h1 = h2 = h3 = 2) are
shown below.

   Off-Diagonal Block Equations for m = 3  (     h      1      =      h      2      =      h      3      = 2)  

P

P P P P P P

S S

S S

21
1

21
1
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1 1

11
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11
j j

12
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1
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d d d d d d
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=
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P P P
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d d d d d d d
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d d d 2
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  ,  j = 3
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The general equation for computing each P11 off-diagonal block,  P11dn dj
 , given by

equation (3.42), can be written as a generalized linear matrix equation of the following form:

AXB  =  C                                                                  (3.43)

where A, B, and C are known constant matrices.  The following Lemma is stated without proof as
an extension of Lemma 2.2 given in Reference [11].

   Lemma 3.2   

Consider the generalized linear matrix equation given by equation (3.43), where A Î R
nxm

, B Î

R
rxp

, and C Î R
nxp

  are given matrices.  Then the following statements are equivalent:

(1)  there exists a solution X Î R
mxr

;
(2)  the columns of C Î  Im [A]  and  the rows of C Î Im [B

T
];

(3)  rank [ A  C ]  =  rank [ A ]  and  rank [ B
 T

  C
 T

 ]
T
  =  rank [ B ];

(4)  Ker (A
*
) Ì  Ker (C

*
)  and  Ker (B) Ì  Ker (C).

Furthermore, the solution, if it exists, is unique if and only if A has full column rank and B has
full row rank.

Equation (3.43) and Lemma 3.2 can be used in computing a solution for each off-diagonal block of
P11, based on equation (3.42).  This solution has the following form.

X
¯
  =  M \ N                                                                    (3.44)

where:                 M  =  B
T
 Ä  A      ;     N  = C

¯
                                                         (3.45)

                       Note  :  C
¯
  is the column-form vector of matrix C obtained by

                                        stacking the columns of C into one column vector

       Þ          X  =  [ X1
¯
  X2

¯
   ...   Xr

¯
  ]    ;  Xi

¯
 Î  R

mx1
   ;     i  =  1, 2, ... , r             (3.46)

Then the following theorem is stated.

   Theorem 3.3   

Given a general linear matrix equation of the form given by equation (3.42) for each off-diagonal
block of P11, i.e.:

                                       ( ) ( )P P P P S21
n

[n]
11

n

[n]
11

n j
12

j n

[n]

d d d d d d
= D

                     where:         n = 1, 2, ... , mÐ1 and j = n+1, n+2, ... , m

then a solution for P11dn dj
 of the form given by equations (3.43) - (3.46) and which satisfies rank

test (3) of Lemma 3.2 always exists and is irreducible.
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   Proof  :   (Sketch)

The rank test (3) of Lemma 3.2 can be used to determine whether a solution for P11dn dj
 exists,

based on the P21di
 , P12 di

 , and P11di di
 matrices computed as described in Section 3.2.1.  If not,

these matrices can be augmented using the appropriate columns and/or rows of the matrix SDdn

[n]

given on the right side of equation (3.42).  Thus, a solution can always be found.  The resulting
solution is irreducible, because satisfaction of rank condition (3) in obtaining a solution prevents
unnecessary redundancy from being built into the solution process.

QED

To summarize, this section has presented a simple numerical technique for computing the
off-diagonal blocks of P11,  i.e. P11dn dj

 , for each block-row, n, and each block-column, j, (as

defined by equation (3.16)), where n = 1, 2, ... , mÐ1 and j = n+1, n+2, ... , m.  The numerical
computation involves the solution of a generalized linear matrix equation, and such a solution can
always be found by augmenting the previously computed P21di

 , P12 di
 , P11di di

, and P11di dj
matrices as required to obtain a solution for equation (3.42) based on equations (3.43) - (3.46).
The result is irreducible, because a solution for each off-diagonal block is computed to just meet
the rank conditions (3) given by Lemma 3.2.

3.2.3 Full P-D Model Solution, Nilpotency and 1-D Irreducibility

Once the P21di
, P12di

, P11didi
 , and P11didj

 partitions for each parameter have been

determined as described in Sections 3.2.1 and 3.2.2, the full solution is determined using
equations (3.9) - (3.12).  This is a simple matter of collecting the matrix partitions together into a
single matrix for P21, P12, and P11.  The D matrix is also known and given by equation (3.13),
where the number of repetitions for each parameter, ni, was determined in solving the P21di

, P12di
,

P11didi
 , and P11didj

 matrices.

The following theorem is given regarding the satisfaction of the nilpotency condition of
equation (3.3) for the full P-D model solution.

   Theorem 3.4   

The P11 matrix defined by equation (3.9) and computed using Theorems 3.1 and 3.3 as described
in Sections 3.2.1 and 3.2.2 satisfies the nilpotency condition of equation (3.3), as defined below.

[ D P11 ]
r+1

  =  0      ;      r+1  £  h1 + h2 + ... + hm

   Proof  :  (Sketch)

For  r+1 = h1 + h2 + ... + hm, nilpotency is satisfied by Lemma 3.1.  For this case, solution of the
off-diagonal blocks does not enter into satisfying the nilpotency condition.  That is, the nilpotency
of the main-diagonal blocks is sufficient to satisfy the nilpotency of the full solution.
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For  r+1 < h1 + h2 + ... + hm, nilpotency is satisfied by the solution of the off-diagonal blocks.
That is, this case arises when there are zero crossterm coefficient matrices that are factored into the
solution of the off-diagonal blocks.  Thus, inclusion of these zero matrix coefficients in the
solution of the off-diagonal blocks automatically satisfies the nilpotency of the full solution.

QED

An objective of the P-D modeling process was to determine a model which is low-order.
The following theorem is therefore given regarding the reducibility of the full P-D model solution.

   Theorem 3.5   

The P-D model matrices defined by equations (3.9) - (3.13) and solved using Theorems 3.1 and
3.3 is 1-D Irreducible.

   Proof  :  (Sketch)

The P21di
, P12di

, and P11didi
 matrices determined using Theorem 3.1 represent an irreducible

realization of the linear and n
th

-degree terms of SD(d) associated with the di parameter.  Solving
equation (3.42) using Theorem 3.3 results in an irreducible solution of the off-diagonal blocks of
P11 based on the solution obtained previously for P21di

, P12di
, and P11didi

.  Thus, putting the full

solution together results in a 1-D irreducible LFT model of the given system.  

QED

4.  Example:  Multivariate Quadratic Problem (See Reference [4])

Consider the following compound inertia matrix problem presented in [4], and first posed
in [13].

J =

- - -

- - -

- - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2yz 2y 4(y z ) 3xy xz

2yz 0 2xy 4xy 3(x z ) yz

2y 2xy 0 4xz 3yz y x

2 2 2

2 2

2 2 2
                            (4.1)

The x, y, and z terms represent displacement parameters from some reference (zero) point for the
system.  Thus, the parameters x, y, and z are the uncertain parameters, d, of the system.  The
results obtained using the above computational solution (in Matlab) are shown below.  However,
the details of obtaining this solution are omitted for brevity.

P21   =   [ P21dx
  P21dy

  P21dz
 ]                                                       (4.2a)

P21
xd

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 0 0 0 1

1 7321 0 0 0 0

0 0 1 0 0

.  ,    P21
yd

=

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2 1147 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 4953 0 0 0

.

.

                 (4.2b)
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P21
zd

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 0 0 0 0 0

0 0 1 7321 0 0 0

0 0 0 0 0 1

.                                                         (4.2c)
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P

P
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12
x

12
y

12
z

=
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ê
ê
ê
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ê

ù

û

ú
ú
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ú
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d

d

d

                                                                      (4.3a)
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=
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ê
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ê
ê
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û

ú
ú
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ú

0 0 0 0 0 0

0 0 0 0 1 7321 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

.

 ,   P12
yd

=

-

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
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D  =  diag [dxI5, dyI7, dzI6]        ( nD = 18 )                                 (4.5)

Note that the solution of this problem was not restricted to a quasi-upper-triangular P11 matrix.  In
particular, it was determined in solving this problem that the quasi-upper-triangular structure for
P11 required an extra repetition in D to obtain a solution.

A comparison of this solution with those obtained in [4] and [13] is shown in Table 1.

Method nx ny nz nD Comments

Belcastro & Chang 5 7 6 18
Direct Numerical Solution for Nonlinear
Problem, No Decomposition, No Model
Reduction

Cockburn & Morton [4] 9 10 9 28
Decomposition to Linear Components,
Solution for Each Linear Component,
Combination of Component Solutions

7 8 5 20 Same As Above with Model Reduction

7 5 7 19
Special Decomp. to Linear Components,
Solution for Each Linear Component,
Combination of Component Solutions

6 5 6 17 Same As Above with Model Reduction

Doyle, Elgersma, et. al. [13] 9 9 9 27
Decomposition to Linear Components,
Solution for Each Linear Component,
Combination of Component Solutions

4 5 4 13
Special Matrix Decomp. to Linear
Products, Solution for Each Linear
Component, Combination of
Component Solutions

Table 1.  Comparison of LFT Models Obtained Using Current Methods
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The solution obtained using this LFT modeling approach required a total of 18 parameters in D,
with 5 repetitions for dx (nx = 5), 7 for dy (ny = 7), and 6 for dz (nz = 6).  Note that the LFT
modeling approach of this paper does not require matrix decompositions for a solution to this
example, since it was already in a multivariate polynomial form.  Moreover, this approach achieves
a low-order model directly (without the use of model reduction), and can be readily implemented in
Matlab.  The result presented in [4] for a direct decomposition required 28 and 20 parameters in D
before and after model resuction, respectively.  The result obtained using a specialized
decomposition approach developed in [4] to reduce the resulting LFT model dimension required 19
and 17 parameters in D before and after model reduction, respectively.  Note that this approach
decomposed the J matrix of equation (4.1) to linear matrix products and sums.  Then an LFT
model for each linear matrix was obtained separately, the individual LFT models combined to form
the full LFT model, and reduction methods applied to remove unnecessary repetitions.  The result
presented in [13] required 27 parameters in D using a linear decomposition approach, and 13
parameters in D by recognizing that J can be factoed into the product of two matrices containing
only linear x, y, and z terms.  Although this yields the lowest-order LFT model, it is specific for
this particular matrix structure and can therefore not be generally applied to other problems.

5.  Concluding Remarks

A numerical approach was presented in this paper to directly compute low-order LFT
models for multivariate polynomial problems.  The LFT modeling approach does not require
matrix decompositions for multivariate polynomial problems, and a low-order model is directly
obtained without model reduction.  The computations depend only on simple matrix computations,
including the singular value decomposition (svd) and solving generalized linear matrix equations.
A matrix svd is used to simultaneously compute a solution for the P21di

, P12 di
, and P11di di

matrices for each di parameter.  Generalized linear matrix equations are used to solve for the
P11didj

 matrices.  The full LFT model is constructed by simply collecting the partitioned solutions

together into the P21, P12, and P11 matrices.  The resulting LFT model is low-order, because
matrix structure is exploited during the computations in satisfying the rank conditions required for
a solution.  Future work will include developing a Matlab implementation of this LFT modeling
approach.
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